Assignment 03

Anscombe01 from class GitHub

## Anscombe (1973) Quartlet

data(anscombe)  # Load Anscombe's data
#View(anscombe) # View the data
summary(anscombe)
       x1             x2             x3             x4           y1        
 Min.   : 4.0   Min.   : 4.0   Min.   : 4.0   Min.   : 8   Min.   : 4.260  
 1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 8   1st Qu.: 6.315  
 Median : 9.0   Median : 9.0   Median : 9.0   Median : 8   Median : 7.580  
 Mean   : 9.0   Mean   : 9.0   Mean   : 9.0   Mean   : 9   Mean   : 7.501  
 3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.: 8   3rd Qu.: 8.570  
 Max.   :14.0   Max.   :14.0   Max.   :14.0   Max.   :19   Max.   :10.840  
       y2              y3              y4        
 Min.   :3.100   Min.   : 5.39   Min.   : 5.250  
 1st Qu.:6.695   1st Qu.: 6.25   1st Qu.: 6.170  
 Median :8.140   Median : 7.11   Median : 7.040  
 Mean   :7.501   Mean   : 7.50   Mean   : 7.501  
 3rd Qu.:8.950   3rd Qu.: 7.98   3rd Qu.: 8.190  
 Max.   :9.260   Max.   :12.74   Max.   :12.500  
## Simple version
plot(anscombe$x1,anscombe$y1)
summary(anscombe)
       x1             x2             x3             x4           y1        
 Min.   : 4.0   Min.   : 4.0   Min.   : 4.0   Min.   : 8   Min.   : 4.260  
 1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 8   1st Qu.: 6.315  
 Median : 9.0   Median : 9.0   Median : 9.0   Median : 8   Median : 7.580  
 Mean   : 9.0   Mean   : 9.0   Mean   : 9.0   Mean   : 9   Mean   : 7.501  
 3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.: 8   3rd Qu.: 8.570  
 Max.   :14.0   Max.   :14.0   Max.   :14.0   Max.   :19   Max.   :10.840  
       y2              y3              y4        
 Min.   :3.100   Min.   : 5.39   Min.   : 5.250  
 1st Qu.:6.695   1st Qu.: 6.25   1st Qu.: 6.170  
 Median :8.140   Median : 7.11   Median : 7.040  
 Mean   :7.501   Mean   : 7.50   Mean   : 7.501  
 3rd Qu.:8.950   3rd Qu.: 7.98   3rd Qu.: 8.190  
 Max.   :9.260   Max.   :12.74   Max.   :12.500  
# Create four model objects
lm1 <- lm(y1 ~ x1, data=anscombe)
summary(lm1)

Call:
lm(formula = y1 ~ x1, data = anscombe)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.92127 -0.45577 -0.04136  0.70941  1.83882 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   3.0001     1.1247   2.667  0.02573 * 
x1            0.5001     0.1179   4.241  0.00217 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared:  0.6665,    Adjusted R-squared:  0.6295 
F-statistic: 17.99 on 1 and 9 DF,  p-value: 0.00217
lm2 <- lm(y2 ~ x2, data=anscombe)
summary(lm2)

Call:
lm(formula = y2 ~ x2, data = anscombe)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.9009 -0.7609  0.1291  0.9491  1.2691 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)    3.001      1.125   2.667  0.02576 * 
x2             0.500      0.118   4.239  0.00218 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared:  0.6662,    Adjusted R-squared:  0.6292 
F-statistic: 17.97 on 1 and 9 DF,  p-value: 0.002179
lm3 <- lm(y3 ~ x3, data=anscombe)
summary(lm3)

Call:
lm(formula = y3 ~ x3, data = anscombe)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.1586 -0.6146 -0.2303  0.1540  3.2411 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   3.0025     1.1245   2.670  0.02562 * 
x3            0.4997     0.1179   4.239  0.00218 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.236 on 9 degrees of freedom
Multiple R-squared:  0.6663,    Adjusted R-squared:  0.6292 
F-statistic: 17.97 on 1 and 9 DF,  p-value: 0.002176
lm4 <- lm(y4 ~ x4, data=anscombe)
summary(lm4)

Call:
lm(formula = y4 ~ x4, data = anscombe)

Residuals:
   Min     1Q Median     3Q    Max 
-1.751 -0.831  0.000  0.809  1.839 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   3.0017     1.1239   2.671  0.02559 * 
x4            0.4999     0.1178   4.243  0.00216 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.236 on 9 degrees of freedom
Multiple R-squared:  0.6667,    Adjusted R-squared:  0.6297 
F-statistic:    18 on 1 and 9 DF,  p-value: 0.002165
plot(anscombe$x1,anscombe$y1)
abline(coefficients(lm1))

plot(anscombe$x2,anscombe$y2)
abline(coefficients(lm2))

plot(anscombe$x3,anscombe$y3)
abline(coefficients(lm3))

plot(anscombe$x4,anscombe$y4)
abline(coefficients(lm4))

## Fancy version (per help file)

ff <- y ~ x
mods <- setNames(as.list(1:4), paste0("lm", 1:4))

# Plot using for loop
for(i in 1:4) {
  ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
  ## or   ff[[2]] <- as.name(paste0("y", i))
  ##      ff[[3]] <- as.name(paste0("x", i))
  mods[[i]] <- lmi <- lm(ff, data = anscombe)
  print(anova(lmi))
}
Analysis of Variance Table

Response: y1
          Df Sum Sq Mean Sq F value  Pr(>F)   
x1         1 27.510 27.5100   17.99 0.00217 **
Residuals  9 13.763  1.5292                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table

Response: y2
          Df Sum Sq Mean Sq F value   Pr(>F)   
x2         1 27.500 27.5000  17.966 0.002179 **
Residuals  9 13.776  1.5307                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table

Response: y3
          Df Sum Sq Mean Sq F value   Pr(>F)   
x3         1 27.470 27.4700  17.972 0.002176 **
Residuals  9 13.756  1.5285                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table

Response: y4
          Df Sum Sq Mean Sq F value   Pr(>F)   
x4         1 27.490 27.4900  18.003 0.002165 **
Residuals  9 13.742  1.5269                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sapply(mods, coef)  # Note the use of this function
                  lm1      lm2       lm3       lm4
(Intercept) 3.0000909 3.000909 3.0024545 3.0017273
x1          0.5000909 0.500000 0.4997273 0.4999091
lapply(mods, function(fm) coef(summary(fm)))
$lm1
             Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.0000909  1.1247468 2.667348 0.025734051
x1          0.5000909  0.1179055 4.241455 0.002169629

$lm2
            Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.000909  1.1253024 2.666758 0.025758941
x2          0.500000  0.1179637 4.238590 0.002178816

$lm3
             Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.0024545  1.1244812 2.670080 0.025619109
x3          0.4997273  0.1178777 4.239372 0.002176305

$lm4
             Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.0017273  1.1239211 2.670763 0.025590425
x4          0.4999091  0.1178189 4.243028 0.002164602
# Preparing for the plots
op <- par(mfrow = c(2, 2), mar = 0.1+c(4,4,1,1), oma =  c(0, 0, 2, 0))

# Plot charts using for loop
for(i in 1:4) {
  ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
  plot(ff, data = anscombe, col = "red", pch = 21, bg = "orange", cex = 1.2,
       xlim = c(3, 19), ylim = c(3, 13))
  abline(mods[[i]], col = "blue")
}
mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex = 1.5)

par(op)

Change chart without using other packages

par(las=1, mar=c(5, 5, 3, 1) + 0.1, cex=1.1) # set label orientation, margins, text size

# plot from above
lm2 <- lm(y2 ~ x2, data=anscombe)
plot(anscombe$x2,anscombe$y2, xlab="x2", ylab="y2", asp=0.75, col= "lightblue3") # change label text, aspect ratio, color
abline(coefficients(lm2), col="darkorchid4") # change line color

Change chart with ggplot2

library(ggplot2)
ggplot(anscombe, aes(x=x2,y=y2)) + # create coordinate system
  geom_abline(col="darkorchid4") + # create line  with custom color
  geom_point(col="lightblue3", lwd=3) + # create points with custom size and color
  xlab("x") + # change x label
  ylab("y") + # change y label
  scale_y_continuous(limits=c(2, 10)) + # change y axis limits
  scale_x_continuous(limits=c(4, 15))   # change x axis limits